排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示 。
计算公式:
此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1[1]
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数 。用符号 C(n,m) 表示 。
计算公式:
;C(n,m)=C(n,n-m) 。(n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m) 。
符号
常见的一道题目
C-Combination 组合数[2]
A-Arrangement 排列数(在旧教材为P-Permutation)
N-元素的总个数
M-参与选择的元素个数
!-阶乘
基本计数原理
⑴加法原理和分类计数法
⒈加法原理:做一件事,完成它可以有n类办法,在
组合恒等式(2张)
第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法 。
⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn 。
⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) 。
⑵乘法原理和分步计数法
⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法 。
⒉合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 。
3.与后来的离散型随机变量也有密切相关 。
组合数的奇偶
奇偶定义:对组合数C(n,k)(n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数 。
下面是判定方法:
结论:
对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数 。
证明:
对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数 。
证明:
利用数学归纳法:
由C(n,k) = C(n-1,k) + C(n-1,k-1);
对应于杨辉三角:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
………………
可以验证前面几层及k = 0时满足结论,下面证明在C(n-1,k)和C(n-1,k-1) (k > 0) 满足结论的情况下,
C(n,k)满足结论 。
1).假设C(n-1,k)和C(n-1,k-1)为奇数:
则有:(n-1)&k == k;
(n-1)&(k-1) == k-1;
由于k和k-1的最后一位(在这里的位指的是二进制的位,下同)必然是不同的,所以n-1的最后一位必然是1
。
现假设n&k == k 。
则同样因为n-1和n的最后一位不同推出k的最后一位是1 。
因为n-1的最后一位是1,则n的最后一位是0,所以n&k != k,与假设矛盾 。
推荐阅读
- 数学考试怎么考好
- 你有洋葱数学的VIP吗?
- excel怎么样输入自定义公式,如果用宏怎么编辑。谢谢
- 通达信指标公式修改成选股公式:谢谢 找出红柱、粉黄柱
- gdp和gnp怎么计算公式一样呢?
- 手抄数学报文字内容 手抄数学报文字资料
- 勾股定理公式怎么算 勾股定理公式算法
- 能否发给我人教版高一数学必修一电子课本.rar,谢谢了
- 斐波那契数列:c语言
- excel身份证年龄计算公式计算,没有反应